Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data
نویسنده
چکیده
This paper establishes the local (or global, resp.) well-posedness of the heat flow of bihharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small local BMO (or BMO, resp.) norms.
منابع مشابه
Well-posedness for the heat flow of polyharmonic maps with rough initial data
We establish both local and global well-posedness of the heat flow of polyharmonic maps from R to a compact Riemannian manifold without boundary for initial data with small BMO norms.
متن کاملWell-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data
We investigate the well-posedness of (i) the heat flow of harmonic maps from R to a compact Riemannian manifold N without boundary for initial data in BMO; and (ii) the hydrodynamic flow (u, d) of nematic liquid crystals on R for initial data in BMO−1 × BMO.
متن کاملRegularity and uniqueness of the heat flow of biharmonic maps
In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit sphere S ⊂ R under a smallness condition of renormalized total energy. For the class of such solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity of hessian energy, and unique limit at t = ∞. We establish both regularity and uniqueness for Serrin’s (p, q)-sol...
متن کاملCommon fixed points of four maps using generalized weak contractivity and well-posedness
In this paper, we introduce the concept of generalized -contractivityof a pair of maps w.r.t. another pair. We establish a common fixed point result fortwo pairs of self-mappings, when one of these pairs is generalized -contractionw.r.t. the other and study the well-posedness of their fixed point problem. Inparticular, our fixed point result extends the main result of a recent paper ofQingnian ...
متن کاملLocal and Global Well-posedness of Wave Maps on R for Rough Data
We consider wave maps between Minkowski space R and an analytic manifold. Results include global existence for large data in Sobolev spaces Hs for s > 3/4, and in the scale-invariant norm L1,1. We prove local well-posedness in Hs for s > 3/4, and a negative well-posedness result for wave maps on R with data in Hn/2(R), n ≥ 1. Also included are positive and negative results for scattering.
متن کامل